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Abstract

In the numerical solution of ordinary differential systems, the method of fractional steps (also known as operator

splitting) yields high-order accurate schemes based on separate, computationally convenient treatments of distinct phys-

ical effects. Such schemes are equally desirable but much less accurate for semi-explicit index-1 differential-algebraic

equations (DAEs). In the first half of this note, it is shown that naı̈ve application to DAEs of standard splitting schemes

suffers from order reduction: both first and second-order schemes are only first-order accurate for DAEs. In the second

half of this note, a new family of higher-order splitting schemes for semi-explicit index-1 DAEs is developed. The new

schemes are based on a deferred correction paradigm in which an error equation is solved numerically, and therefore

inherit a simple computationally convenient structure. Higher-order convergence of the new schemes is proved, and

numerical results confirm the expected order of accuracy in addition to establishing efficiency.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper explores new approaches to the construction and analysis of fractional step methods for solv-

ing differential-algebraic equations (DAEs). The method of fractional steps, or operator splitting, is often

used as an efficient numerical integration technique for solving initial value problems in ordinary differen-

tial equations (ODEs) [1]. Operator splitting combines integration schemes for subproblems into an efficient
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scheme for the overall problem. For differential-algebraic equations, which combine algebraic constraints

with ODEs, splitting schemes separate the algebraic constraints from the differential equations. For exam-

ple, when the ODEs and constraints arise from distinct but coupled physical phenomena, splitting schemes

can take full advantage of existing computer codes tuned for each subproblem.

This paper examines fractional step methods for index-1 DAEs in the most natural semi-explicit
form. Common methods for general index-1 DAEs include one-step implicit Runge–Kutta (RK) meth-

ods [2,3] and multistep backward differentiation formulae (BDF) [2]. BDF methods require an expen-

sive simultaneous integration of the ODEs and satisfaction of the constraints. Implicit RK methods are

even more expensive, as they require solution of nonlinear systems whose size is the number of stages

multiplied by the original size of the DAE. In the special case of semi-explicit index-1 DAEs, explicit

Runge–Kutta methods [3] efficiently decouple the ODEs solver from the algebraic constraints. However,

these methods are only conditionally stable and become inefficient for stiff DAEs. Some special-purpose

splitting schemes preserve the dissipative structure of the DAE [4,5]. These schemes successfully avoid
both the expense of fully implicit schemes and the conditional stability of explicit Runge–Kutta

schemes, but lack generality. All these issues have led us to explore splitting schemes in greater detail

than presently available in the literature.

The paper is organized as follows: In Section 2, we show that the standard one-pass and two-pass

symmetric splitting schemes which are, respectively, first- and second-order accurate for ODEs, are only

first-order accurate for DAEs. In Section 3, this ‘‘order reduction’’ is illustrated by a two-dimensional

example. Order reduction is overcome by a new splitting scheme, based on deferred correction of a

first-order scheme, which is introduced and analyzed in Section 4. The deferred correction paradigm
solves an error equation with the same structure as the original DAE, using the original first-order

scheme. The resulting scheme is simple, efficient, and second-order accurate. It can be iterated to obtain

efficient schemes with third and higher-order accuracy. Finally, Section 5 presents numerical examples

demonstrating the performance of our second and third-order accurate splitting schemes. In particular,

an application to a large system of index-1 DAEs, arising from electrical circuit simulation, illustrates

efficiency of higher order splitting schemes over a highly optimized, state-of-the-art, fifth order Runge–

Kutta scheme – RADAU5.
2. Order reduction

2.1. The ODE case

In this section, we analyze the accuracy of operator splitting algorithms for ODEs [6]. Consider a first-

order ordinary differential system written in partitioned form,
_x

_y

� �
¼

f ðx; yÞ
gðx; yÞ

� �
: ð1Þ
For many coupled problems, the partitioned variables x and y describe different physical variables; for

example in [5,7] they denote mechanical deformation and an auxiliary field, respectively.

A splitting scheme approximates the solution of Eq. (1) by solving the following split equations in each
time step:
_x

_y

� �
¼

f ðx; yÞ
0

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

U

;
_x

_y

� �
¼

0

gðx; yÞ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

: ð2Þ
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For example, we denote by Ch � Uh the one-pass splitting algorithm which evolves the solution from tn to

tn + 1 = tn + h by (a) solving the first split ODE over one time step h with right-hand side U, and (b) solving

the second split ODE over one time step h with right-hand side C, starting from the solution produced by

(a). The other one-pass splitting algorithm Uh � Ch is similarly defined. The two-pass symmetric algorithms

of [6] are Uh/2 � Ch � Uh/2 and Ch/2 � Uh � Ch/2. They are symmetric because they take alternate half-steps of
the two one-pass algorithms: for example,
1 Fo

matrix
Uh=2 � Ch � Uh=2 ¼ ðUh=2 � Ch=2Þ � ðCh=2 � Uh=2Þ:
The classical error analysis of one-pass algorithms leads to a splitting error of O(h2) per time step and

first-order accuracy. The symmetric two-pass algorithms attain second-order accuracy because the splitting
error per time step is O(h3) [8].

Note 1. For finite-dimensional ODEs, Lipschitz continuity of the split evolution operators U and C implies

convergence for the split solution. However, for infinite-dimensional ODEs or PDEs, stability requires that

U and C generate bounded semi-groups. Unconditionally stable splitting schemes arising from dissipative
dynamical systems [9] occur in many applications, notably in transient thermomechanical problems [5].
2.2. The DAE case

In this section, splitting and global errors are analyzed for the one-pass and two-pass algorithms applied

to DAEs of the partitioned form,
0

_y

� �
¼

f ðx; yÞ
gðx; yÞ

� �
:¼ v: ð3Þ
The DAEs are assumed to be of index 1 1 [2], meaning that the Jacobian matrix fx of f(x,y) with respect

to x is invertible in a neighborhood of the solution to Eq. (3). We split the partitioned equations into
0

_y

� �
¼

f ðx; yÞ
0

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
U-Algebraic

and
_x

_y

� �
¼

0

gðx; yÞ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C-ODEs

:
ð4Þ
so v = U + C.

2.2.1. One-pass algorithms

The one-pass algorithm Ch � Uh first finds the algebraic variables x = xn + 1 that satisfy the algebraic con-

straint f(x,y) = 0 with y = yn fixed, and then evolves the ODE variables y through time h with x = xn + 1

fixed. The algorithm Uh � Ch is similarly defined, with evolution of y through h followed by choosing x

to satisfy the algebraic constraints.

Since the DAE has index 1 by assumption, the implicit function theorem implies that a C1 function u ex-

ists such that
f ðx; yÞ ¼ 0 implies x ¼ uðyÞ ð5Þ

(near a solution (x,y)). Thus y satisfies a pure ODE,
_y ¼ gðuðyÞ; yÞ: ð6Þ
r coupled mechanical-auxiliary field problems, the index-1 assumption is equivalent to the natural assumption that the stiffness

associated with the mechanical degrees of freedom is invertible.
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By Taylor expansion and the chain rule, the exact solution y(t) satisfies
yðtnþ1Þ ¼ yðtnÞ þ h _yðtnÞ þ
h2

2!
€yðtnÞ þ Oðh3Þ

¼ yðtnÞ þ hgðuðyðtnÞÞ; yðtnÞÞ þ
h2

2!
gxðuðyðtnÞÞ; yðtnÞÞ _uðyðtnÞÞ þ gyðuðyðtnÞÞ; yðtnÞÞ _yðtnÞ
� �

þ Oðh3Þ;
where gx denotes the Jacobian matrix of partial derivatives of g with respect to the components of x. The

exact solution x(t) satisfies x(tn + 1) = u(y(tn + 1)).

We now analyze the local error committed in one time step, starting from the exact value y(tn). The one-

pass algorithm Uh � Ch generates an approximation v(t) such that
_v ¼ gðxðtnÞ; vÞ ¼ gðuðyðtnÞÞ; vÞ tn 6 t < tnþ1; ð7Þ

and v(tn) = y(tn). Thus by Taylor expansion and the chain rule,
vðtnþ1Þ ¼ vðtnÞ þ h_vðtnÞ þ
h2

2!
€vðtnÞ þ Oðh3Þ

¼ yðtnÞ þ hgðuðyðtnÞÞ; yðtnÞÞ þ
h2

2!
gyðuðyðtnÞÞ; yðtnÞÞ _yðtnÞ þ Oðh3Þ: ð8Þ
Hence the local error is
vðtnþ1Þ � yðtnþ1Þ ¼ eðtnþ1Þh2 þ Oðh3Þ; ð9Þ

where e is a smooth function.

Applying Uh yields a numerical approximation u to x which satisfies
uðtnþ1Þ ¼ uðvðtnþ1ÞÞ ¼ uðyðtnþ1Þ þ h2enþ1 þ Oðh3ÞÞ ¼ uðyðtnþ1ÞÞ þ h2uyðyðtnþ1ÞÞenþ1 þ Oðh3Þ
¼ xðtnþ1Þ þ h2uyðyðtnþ1ÞÞenþ1 þ Oðh3Þ: ð10Þ
From Eqs. (9) and (10) it follows that ix(tn + 1) � u(tn + 1)i = O(h2) and iy(tn + 1) � v(tn + 1)i = O(h2),

where i Æ i denotes any convenient error norm. In other words, the one-pass algorithm Ch � Uh commits sec-

ond-order local errors within a time step, starting from the exact solution.

First-order convergence can then be easily proved. Consider the one-pass splitting algorithm as a one-
step method for the ODE equivalent of the DAE, which takes in solution values x(tn) = u(y(tn)) and y(tn)

and returns the approximation v(tn + 1) which solves (6) to order O(h2) within a time step. Assuming a

standard Lipschitz condition igy(u(y),y))i 6 L, Theorem 3.4 of [10], for example, shows that the global er-

ror E = y(t) � v(t) satisfies,
kEk 6 h
C
L
exp½Lðt � t0Þ�; ð11Þ
where t0 is the initial time and C is a constant independent of h. Eq. (11) proves first-order accurate global

convergence.

For the alternate splitting scheme Ch � Uh, one obtains
uðtnþ1Þ ¼ xðtnÞ ðupdating uðtnþ1Þ by UhÞ: ð12Þ

The approximation v then satisfies
_v ¼ gðuðtnþ1Þ; vÞ ¼ gðxðtnÞ; vÞ: ð13Þ

As above, iu(tn + 1) � x(tn + 1)i = O(h) and iv(tn + 1) � y(tn + 1)i = O(h2). Even though the local error in x

is O(h) in each step, the order of accuracy of the Uh � Ch splitting scheme is also 1. This follows because
evolution under Uh simply updates u = u(v) given v, and is therefore controlled by the errors in v alone.
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Indeed, the sequence of fractional steps is . . .(Ch � Uh) � (Ch � Uh) � (Ch � Uh). Since the initial conditions

satisfy f(u(t0),v(t0)) = 0, the first update Uh is redundant. Later in the sequence, Uh simply updates u given

v, so the sequence is equivalent to
. . . ðUh � ChÞ � ðUh � ChÞ � ðUh � ChÞ|{z}
1ststep

: ð14Þ
We have already shown first-order global convergence for the latter sequence, as a consequence of which

the former sequence is also globally convergent with first-order. The same conclusions hold even when var-

iable stepsizes h1, h2,. . . are used in each time step. This completes the proof of first-order accuracy for the

global error for the Ch � Uh split as well.
Before analyzing the order of the two-pass algorithm, we make a few observations.

Note 2. The derivation provided here accounts only for errors due to operator splitting; exact time

integration of the split flow operators is assumed. The additional discretization error due to approximate

time stepping (in the linear case) is analyzed in [11].

Note 3. If the right hand sides g and f depend explicitly on time, so the DAE is non-autonomous, one can

convert the system to an equivalent autonomous one by the standard technique: augment the ODEs by the

equation _t ¼ 1, with initial conditions t = t0. However, in the later discussion of deferred correction this will

not be possible, as the correction equations are always non-autonomous DAEs.

Note 4. The Lipschitz assumption is used only to ensure stability of the splitting scheme. If the sub-oper-

ators U and C are dissipative, stability of the splitting scheme is automatic and the proof extends even to the
infinite dimensional case. (Then dissipativity guarantees that U and C generate contractive semi-groups

[12].)
2.2.2. Two-pass algorithms

The main result of this section is that two-pass schemes are only first-order accurate for DAEs, even

though they are second-order for ODEs.

Consider the two-pass algorithm Uh/2 � Ch/2 � Uh/2. The starting values for calculating the local trunca-

tion error are y(tn) and x(tn) = u(y(tn)). The fractional step Uh/2 gives uðtnþ1
2
Þ ¼ uðyðtnÞÞ ¼ xðtnÞ. The frac-

tional step Ch then gives
_v ¼ gðuðtnþ1
2
Þ; vÞ ¼ gðxðtnÞ; vÞ for t 2 ½tn; tnþ1�: ð15Þ
Finally, the fractional step Uh/2 for the second pass updates u(tn + 1) as
uðtnþ1Þ ¼ uðvðtnþ1ÞÞ: ð16Þ

Since the first fractional step Uh/2 is redundant, the updates given by (15) and (16) exactly correspond to

the Ch � Uh case and as before lead to second-order splitting error. Consequently, as for the one-pass algo-

rithm, the two-pass splitting scheme Uh/2 � Ch � Uh/2 is only globally first-order accurate. This is in sharp

contrast to the second-order accuracy of two-pass algorithms for ODEs.

The more interesting splitting error analysis occurs for the Ch/2 � Uh � Ch/2 sequence. The steps can be

summarized as:

(1) Ch/2: Update vðtnþ1
2
Þ with v(tn) = y(tn) by exactly solving,
_v ¼ gðuðyðtnÞÞ; vÞ t 2 ½tn; tnþ1
2
�: ð17Þ
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Repeating the earlier analysis, we obtain
vðtnþ1
2
Þ � yðtnþ1

2
Þ ¼ h2enþ1

2
þ Oðh3Þ: ð18Þ
(2) Uh: Update u(tn + 1) exactly, using the implicit function theorem,
uðtnþ1Þ ¼ uðvðtnþ1
2
ÞÞ: ð19Þ
The splitting error is calculated as follows:
uðtnþ1Þ ¼ uðyðtnþ1
2
Þ þ h2enþ1

2
þ Oðh3ÞÞ ¼ uðyðtnþ1Þ �

h
2
_yðtnþ1Þ þ Oðh2ÞÞ ¼ uðyðtnþ1ÞÞ þ OðhÞ

¼ xðtnþ1Þ þ OðhÞ; ð20Þ
implying iu(tn + 1) � x(tn + 1)i = O(h).

(3) Ch/2: Update v(tn + 1) with vðtnþ1
2
Þ as the initial value by exactly solving,
_v ¼ gðuðvðtnþ1
2
ÞÞ; vÞ t 2 ½tnþ1

2
; tnþ1�: ð21Þ
The splitting error in v(tn + 1) is found by expanding the exact solution around tnþ1
2
.

yðtnþ1Þ ¼ yðtnþ1
2
Þ þ h

2
_yðtnþ1

2
Þ þ h2

8
€yðtnþ1

2
Þ þ Oðh3Þ ¼ yðtnþ1

2
Þ þ h

2
gðuðyðtnþ1

2
ÞÞ; yðtnþ1

2
ÞÞ þ Oðh2Þ: ð22Þ
Similarly, expanding the approximate solution,
vðtnþ1Þ ¼ vðtnþ1
2
Þ þ h

2
_vðtnþ1

2
Þ þ h2

8
€vðtnþ1

2
Þ þ Oðh3Þ ¼ vðtnþ1

2
Þ þ h

2
gðuðyðtnþ1

2
ÞÞ; yðtnþ1

2
ÞÞ þ Oðh2Þ: ð23Þ
Using yðtnþ1
2
Þ ¼ vðtnþ1

2
Þ þ h2enþ1

2
þ Oðh3Þ in Eq. (23), one can show that the h2 terms do not cancel with the

corresponding terms in the expansion of the exact solution. As a result, Eqs. (22) and (23) commit a split-

ting error of size iv(tn + 1) � y(tn + 1)i = O(h2).

In order to find the global order of convergence, we observe that
. . . ðCh=2 � Uh � Ch=2Þ � ðCh=2 � Uh � Ch=2Þ � ðCh=2 � Uh � Ch=2Þ ð24Þ
¼ . . . ðCh � Uh � Ch � Uh � Ch � Uh � Ch=2Þ: ð25Þ
Consequently, the operation Ch/2 in the first step can be viewed as providing initial conditions accurate

to O(h2) for the sequence . . .Ch � Uh � Ch � Uh � Ch � Uh. From the analysis of the one-pass algorithms, the

latter sequence is globally first-order convergent, so initial conditions accurate to O(h2) will preserve the

global order. The analysis extends to the variable stepsize case (the details are omitted). Thus we have

proved that the two-pass algorithms are only first-order accurate, in contrast to their second-order accu-
racy for ODEs.

Note 5. An alternate approach overcomes order reduction in the two-pass scheme by recasting the DAEs

into the equivalent ODEs:
f ðx; yÞ ¼ 0 ) fx _xþ fy _y ¼ 0 )
_x

_y

� �
¼ ð�fxÞ�1ðfyÞg

g

 !
: ð26Þ
The one-pass and two-pass algorithms for this system of ODEs attain first- and second-order global orders,
respectively. In practice, this technique is rather expensive, as higher derivatives of the right-hand side are

involved. In addition, the constraints are not always satisfied exactly, and thus may drift over many time

steps.
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3. Numerical example

The orders of accuracy derived above are verified through a simple numerical example. Consider the

exactly-solvable DAE,
L
og

 (
E

rr
or

)

(a)
0

_y

� �
¼ x3 � y2

x

� �
; ð27Þ
with initial conditions x0 = 1 and y0 = 1 at t0 = 0 satisfying x30 � y20 ¼ 0. The equivalent ODE form is
_x

_y

� �
¼

2y
3x

x

 !
: ð28Þ
The exact solution satisfying the initial conditions is (xex(t),yex(t)) = ((1 + t/3)2,(1 + t/3)3).

A single step of the one-pass splitting, Uh � Ch, with exact integration, yields solutions
DAE Split
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L
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ro
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Fig. 1. (a) Order reduction in DAE-based splitting vs. (b) no order reduction in ODE-ba
Equivalent ODE Split
yn + 1 = yn + xnh2

yn + 1 = yn + xnh

1

xnþ1 ¼ y3

nþ1
 xnþ1 ¼ ðx2n þ 4h
3
ynþ1Þ2
Similarly, the two-pass splitting Ch/2 � Uh � Ch/2 yields solutions
DAE Split
 Equivalent ODE Split
ynþ1
2
¼ yn þ xnh=22
ynþ1
2
¼ yn þ xnh=2

1

xnþ1 ¼ y3

nþ1
2

xnþ1 ¼ ðx2n þ 4h
3
ynþ1

2
Þ2
ynþ1 ¼ ynþ1
2
þ xnþ1h=2
 ynþ1 ¼ ynþ1

2
þ xnþ1h=2
Fig. 1(a) plots the logarithm of the DAE splitting errors versus the logarithm of the uniform stepsize,

and exhibits first-order convergence for both one and two-pass algorithms. Fig. 1(b) shows the errors

for the ODE form. First and second-order convergence, agreeing with theory, is obtained for both one-

and two-pass schemes.
t)
10

−4
10

−2

2
1

1

sed splitting.
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4. Order improvement by deferred correction

In this section, we employ the deferred correction paradigm to derive a new splitting scheme, and prove

its second-order accuracy. The general paradigm of deferred correction is straightforward: Given an

approximate solution v to a problem with exact solution y, derive an equation for the error e = v � y

and solve it numerically for an approximate error �. The corrected solution V = v � � is then more accurate

than v, and the process can be repeated to generate schemes of arbitrarily high order if the solution is suf-

ficiently smooth. The advantage of this paradigm is that the error equation has the same structure as the

original equation, so any convenient low-order method can be used to compute both the original solution v

and all subsequent approximate errors �.
4.1. Deferred correction

Consider the general non-autonomous DAE,
0

_y

� �
¼

f ðt; x; yÞ
gðt; x; yÞ

� �
:

We generate a basic solution by the analogue of the simple first-order splitting Ch � Uh, which applies the
constraint and then the ODE solver. The resulting numerical solution v(t) exactly satisfies the ODE,
_v ¼ gðt;uðt; vnÞ; vÞ tn 6 t < tnþ1; ð29Þ

where f(t,u(t,y),y) = 0 and vn = v(tn).

Thus the error e = v � y satisfies the exact error equation,
_e ¼ gðt;uðt; vnÞ; vðtÞÞ � gðt;uðt; vðtÞ � eðtÞÞ; vðtÞ � eðtÞÞ:

The first-order splitting scheme replaces e(t) by en in the argument of the constraint solver u only, yield-

ing a second-order splitting scheme composed of a first-order step,
_v ¼ gðt;uðt; V nÞ; vðtÞÞ; vðtnÞ ¼ V n
on tn 6 t < tn + 1, followed by a correction step,
_� ¼ gðt;uðt; V nÞ; vðtÞÞ � gðt;uðt; vðtÞÞ; vðtÞ � �ðtÞÞ; �ðtnÞ ¼ 0 ð30Þ

on tn 6 t < tn + 1. Here the corrected solution is V(t) = v(t) � �(t) and we are correcting each time step before

proceeding to the next. The initial value �n = 0 has therefore been omitted in the argument of the second g in

the correction step (30). The correction step retains the simplicity of the basic splitting scheme, because the

correction equation is a pure ODE for the correction: The constraints are imposed only via the known

approximate solution v.
Since the solution � of Eq. (30) is a first-order accurate approximation of e and e is itself O(h), we expect

� = e + O(h2). In the following subsection, we prove that the corrected solution V(t) = v(t) � �(t) is indeed
second-order accurate.

4.2. Convergence analysis

The convergence proof for the first-order splitting scheme contains the basic idea of the convergence

proof for the second-order scheme we have just derived by deferred correction, so we review it briefly first.
The exact solution satisfies the ODE form,
_y ¼ gðt;uðt; yÞ; yÞ;
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while the numerical solution v satisfies
_v ¼ gðt;uðt; vnÞ; vðtÞÞ:

By subtraction, the error e = v � y satisfies
_e ¼ gðt;uðtn; vðtnÞÞ; vÞ � gðt;uðt; yÞ; yÞ ¼ gxuyðvn � yÞ þ gxutðtn � tÞ þ gyðv� yÞ

¼ �gxf �1
x fyðvn � yÞ þ gxutðtn � tÞ þ gye:
Here we have denoted differentiation by subscripts and evaluation of the elements of a matrix or vector

at possibly different unknown points by an overbar, in accordance with the multivariable mean value the-
orem [13]. For convenience, write vn � y = vn � yn + yn � y, A ¼ �gxf �1

x fy , b ¼ gxut and C ¼ gy to get
_e ¼ Aen þ Aðyn � yÞ þ bðtn � tÞ þ Ce:
Assume derivative bounds iAi 6 a, ibi 6 b and iCi 6 c and integrate to get
keðtÞk ¼ ken þ
Z t

tn

Aen dsþ
Z t

tn

Aðyn � yÞ dsþ
Z t

tn

bðtn � sÞ dsþ
Z t

tn

CeðsÞ dsk

6 kenk þ aðt � tnÞðkenk þ kyn � ykÞ þ b
2
ðt � tnÞ2 þ c

Z t

tn

keðsÞk ds: ð31Þ
By Gronwall�s inequality
0 6 uðtÞ 6 aþ b
Z t

0

uðsÞ ds ) uðtÞ 6 a exp½bt�
and a Taylor expansion of y, this gives
kenþ1k 6 exp½ðaþ cÞh�kenk þ dh2;
where d bounds ðak _yk þ b=2Þ exp½ch�. Iterating this inequality gives
kenk 6
exp½ðaþ cÞtn� � 1

ðaþ cÞ dh;
which proves convergence.

This proof resembles a standard convergence proof for e.g. Euler�s method for ODEs [13], with the

exception that the usual recurrence inequality, which bounds the accumulated error at one step in terms

of previous errors and local truncation errors, becomes the delay-differential inequality (31). Thus Gron-

wall�s inequality is required, to derive a bound for en + 1 in terms of en.
The second-order proof is similar. By Taylor expansion, the error d(t) = V(t) � y(t) satisfies the exact

equation,
_dðtÞ ¼ gðt;uðt; vðtÞÞ; vðtÞ � �ðtÞÞ � gðt;uðt; V ðtÞ � dðtÞÞ; V ðtÞ � dðtÞÞ ¼ A�ðtÞ þ ðAþ BÞdðtÞ;

where A ¼ gxuy and B ¼ gy . At the same time, the correction satisfies
_�ðtÞ ¼ AðV n � vðtÞÞ þ B�ðtÞ;

where
kvðtÞ � V nk 6

Z t

tn

kgðs;uðs; V nÞ; vðsÞÞkds 6 hG;
with G a bound for the maximum of igi. Consequently,
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k�ðtÞk 6 Gah2 þ b
Z t

tn

k�ðsÞk ds 6 Gah2 exp½bt�
by Gronwall, so
kdðtÞk 6 kdnk þ
Z t

tn

ak�ðsÞk dsþ ðaþ bÞ
Z t

tn

kdðsÞk ds
and applying Gronwall again gives
kdðtÞk 6 ðkdnk þ Gah3 exp½bh�Þ exp½ðaþ bÞh�:

By iteration, global second-order convergence,
kdnk 6 Oðh2Þ;

follows immediately as usual. Thus the second-order splitting based on deferred correction produces a sec-

ond-order accurate solution V.

A third-order scheme can be constructed by repeating the deferred correction step to find a second-order

error and subtracting it. Third-order accuracy can then be proved by a very similar analysis. However, the

Picard-like viewpoint of the next subsection permits a simpler proof.

4.3. A Picard-like viewpoint

The deferred correction scheme above computes a first-order solution v and then a correction �, yielding
a second-order solution V = v � �. Summing the original and correction Eqs. (29) and (30) yields a simple

second-order scheme for V itself,
_V ¼ gðt;uðt; vðtÞÞ; V ðtÞÞ tn 6 t < tnþ1:
The constrained variables are simply lagged one iteration behind. Similarly, the jth-order solution vj
(where v = v1 and V = v2) produced by j � 1 steps of deferred correction satisfies
_vj ¼ gðt;uðt; vj�1ðtÞÞ; vjðtÞÞ tn 6 t < tnþ1:
Using the integral form and Gronwall�s inequality as above yields immediately that
vjðtÞ � yðtÞ ¼ Oðhjþ1Þ

for all j.

While the Picard-like version of our approach thus yields a simple high-order convergence proof, the

deferred correction version above may be more convenient for practical implementation. It produces a

natural error estimate for step size adaptation. We also note that all our analysis assumes that both

constraints and ODEs are solved exactly in each timestep; the deferred correction formulation implies
that we can use a simple first-order scheme such as explicit Euler or linearly implicit Euler without

order reduction.
5. Numerical examples

In this section, we present three more examples. First we repeat the order reduction example, using our

deferred correction schemes. Second, we demonstrate that our schemes are more efficient than a standard
scheme, for a high-dimensional transistor example with practical applications. Finally, we illustrate the

application of our schemes to a stiff system.
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Fig. 2. Global error at t = 0.2 for the two-dimensional example for second and third-order splitting schemes.
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5.1. Order confirmation

Our second and third-order deferred correction splitting schemes are applied to the example considered

in Section 3. The global splitting errors of the 2-norm of the two components at t = 0.2, are plotted as a

function of stepsize in Fig. 2. It is clear from the plot that the correct orders of convergence are

achieved–thus providing a simple verification of the analysis. Note that the deferred correction flows are

integrated exactly in Fig. 2.

5.2. Transistor amplifier example

One of the primary applications for the techniques developed in this paper is in the simulation of elec-

trical circuits. The challenge in simulating circuits with transistors, capacitors and resistors as circuit ele-

ments, comes from stiff oscillatory behavior of circuit potentials when subjected to an alternating

voltage. The resulting index-1 DAEs are highly nonlinear. Transistor response introduces nonlinearities

to alter the response amplitude while capacitors introduce the transient behavior.

As an example we consider the amplifier circuit shown in Fig. 3, which is representative of circuits with
oscillatory response. This example is a modification of an amplifier example considered in reference [3]. It is

a convenient numerical test case because the total amplification can be controlled through parameters for

resistances, capacitances and transistors, while the number of transistors N can be varied systematically.

This allows us to demonstrate the efficiency of our splitting schemes for problems with increasing sizes
UbR0
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U1

(n)
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(n)

U1

(N+2)
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N Repeated Elements

R

Last Element
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First Element
O

Fig. 3. Schematic of the transistor amplifier.
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and similar response characteristics. Response frequency increases with problem size, making the circuit

more challenging to simulate.

The governing equations are in terms of nodal potentials U ðiÞ
j . A linear transformation recasts the circuit

equations into a semi-explicit index-1 form, in terms of transformed potentials V ðiÞ
j [3]. They are:
0 ¼ Ue

R0

þ Ub

R
� V ð1Þ

3

R0

� 2

R
ðV ð1Þ

3 þ V ð2Þ
1 Þ þ ða� 1Þf ðV ð1Þ

3 þ V ð2Þ
1 � V ð2Þ

2 Þ

C _V
ðnÞ
1 ¼ Ub

R
� 2

R
ðV ðn�1Þ

3 þ V ðnÞ
1 Þ þ ða� 1Þf ðV ðn�1Þ

3 þ V ðnÞ
1 � V ðnÞ

2 Þ n ¼ 2; . . . ;N þ 1

C _V
ðnÞ
2 ¼ f ðV ðn�1Þ

3 þ V ðnÞ
1 � V ðnÞ

2 Þ � V ðnÞ
2

R
n ¼ 2; . . . ;N þ 1

0 ¼ 2Ub � V ðnÞ
3

R
� af ðV ðn�1Þ

3 þ V ðnÞ
1 � V ðnÞ

2 Þ � 2

R
ðV ðnÞ

3 þ V ðnþ1Þ
1 Þ

þ ða� 1Þf ðV ðnÞ
3 þ V ðnþ1Þ

1 � V ðnþ1Þ
2 Þ n ¼ 2; . . . ;N

0 ¼ Ub � V ðNþ1Þ
3

R
� af ðV ðNÞ

3 þ V ðNþ1Þ
1 � V ðNþ1Þ

2 Þ � V ðNþ2Þ
1 þ V ðNþ1Þ

3

R

C _V
ðNþ2Þ
1 ¼ � V ðNþ2Þ

1 þ V ðNþ1Þ
3

R

ð32Þ
These 3N + 2 equations have 3N + 2 unknown voltages V ðiÞ
j . Consistent initial conditions for this system

of DAEs in terms of the 3N + 2 voltages are: V3
(1)(0) = 0, V3

(n)(0) = Ub n = 2, . . ., N + 1, V1
(n)(0) = Ub/

2 � V3
(n � 1), V2

(n)(0) = Ub/2 n = 2, . . ., N + 1, and V1
(N + 2)(0) = �Ub. The variables V3

(n),
n = 2, . . ., N + 1, and V1

(1) are the algebraic variables, while the rest are ODE variables. The nonlinear tran-

sistor function f is given by f(v) = b[exp((v/Uf) � 1]. Parameter values are Ub = 6, a = 0.99, b = 10�6,

R0 = 103, R = 9 · 103 and, C = 10�6. We consider N = 100, 400, 700, 1000 for our test suite of increasing

problem sizes, with Uf = 2.7 · 10�1 for N = 1000 and Uf = 2.6 · 10�1 for the rest. A periodic input voltage

signal Ue(t) = 0.1sin(200pt) is chosen and the error in the amplified nodal output voltage

U ðNþ2Þ
1 ¼ V ðNþ1Þ

3 þ V ðNþ2Þ
1 (shown at node O in Fig. 3) is measured.

Fig. 4 displays the output voltage at the end node (marked O in Fig. 3) for N = 100, 400, 700, 1000, in the

interval t 2 [0, 0.035]. The response frequency increases slowly with N, making the already oscillatory equa-
tions stiffer and harder to solve.

Fig. 5 plots errors in V3
(N + 1) + V1

(N + 2) vs. CPU time (on a 3.1GHz Intel Pentium processor with

512MB RAM), on a log–log scale. The errors are plotted at Tmax = 0.20 for N = 100, Tmax = 0.10 for

N = 400, Tmax = 0.07 for N = 700, and Tmax = 0.035 for N = 1000; these values of Tmax result in CPU times

of the same order of magnitude for all the cases.

We compare our second- and third-order splitting schemes with the highly optimized fifth-order implicit

RK code RADAU5 of [14]. The ODEs are integrated by forward Euler (marked Sp2ex and Sp3ex in Fig.

5), and by linearized implicit Euler for the uncorrected ODEs (29), coupled with forward Euler for the error
Eq. (30) (marked Sp2imex and Sp3imex in Fig. 5). We have used constant stepsizes for our simulations.

RADAU5 experienced frequent and repeated stepsize failures for tolerances less than 10�9 (probably

due to ill-conditioning of the Jacobian of the full system of equations). Thus the error is calculated by com-

parison with our third order splitting solution Sp3imex, accurate to 10–11 digits. The individual Jacobians

of the constraints and the ODEs were well-conditioned, so splitting schemes could obtain close to full dou-

ble precision accuracy.

Fig. 5 clearly demonstrates the main advantage of splitting: the decoupling of algebraic and differential

equations. For N = 100, RADAU5 outperforms all our split implementations. At N = 400, with 1202
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Fig. 4. Amplified voltage U ðNþ2Þ
1 ¼ V ðNþ1Þ

3 þ V ðNþ2Þ
1 for the transistor amplifier: (a) N = 100, (b) N = 400, (c) N = 700 and (d) N = 1000.
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unknowns, RADAU5 still performs better than our split implementations, although the margin has
decreased. At N = 700, with 2102 unknowns, the error–CPU curve of RADAU5 crosses those of the

third-order splitting scheme at errors ranging from 10�4 to 10�5 and second-order splitting scheme at errors

ranging from 10�2 to 10�3. Thus for relaxed error tolerances, splitting schemes clearly outperform RA-

DAU5. When N = 1000, Sp3imex outperforms RADAU5 for all tolerances greater then 10�8, while RA-

DAU5 terminated early due to repeated stepsize failures for most tolerances smaller than 10�8. Hence

over the entire range of tolerances where RADAU5 can provide a solution to the 1000 transistor problem,

our third-order schemes outperformed RADAU5. For engineering accuracy of 4 digits, our third-order

schemes are about twice as fast as the state-of-the-art, highly optimized, adaptive stepsize, fifth-order RA-
DAU5 scheme. These results clearly demonstrate the efficiency gained by using our splitting schemes for

large index-1 DAEs from circuit simulation.

5.3. Pendulum example

As a final example, a stiff damped pendulum is considered. This example is interesting because the first-

order splitting Ch � Uh is also dissipative. Thus we investigate stability and accuracy of the splitting schemes

for large stepsizes. The governing equations presented in [3] are modified to include damping and an input
excitation. The index-1 system is given by:
_p ¼ u;

_q ¼ v;

m _u ¼ �pK� cu� f ðtÞ;
m _v ¼ �qK� g � cv;

0 ¼ mðu2 þ v2Þ � gq� l2K� pcu� qcv:

ð33Þ
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Here, values of mass m = 5 · 10�5, damping c = 5 · 10�3, length l = 1, acceleration due to gravity g = 1
are chosen. The tension K in the pendulum rod is an algebraic variable, while the position coordinates p and

q and their time derivatives u and v are ODE variables. A periodic input excitation f(t) = 0.2 sin(0.75pt) is
chosen. The pendulum system is dissipative due to damping. Since the tension K is always positive or zero,

replacing the current K(t) with K(tn)P 0 for t 2 [tn,tn + 1] still renders the system dissipative. This replace-

ment exactly corresponds to the first-order split Ch � Uh. The exact solution has an initial transient phase

followed by a periodic steady state solution. The stiffness ratio for the pendulum system is Oð102Þ leading
to an initial transient phase for t 2 [0,0.4].

Using backward Euler, which is dissipative for the ODE system, one obtains a dissipative splitting
scheme with no stepsize restrictions for stability. On the other hand, numerical experiments indicate that

the second and third order deferred correction schemes are only conditionally stable. For the present case,

the maximum fixed stepsize for the second-order scheme is 9 · 10�3, and requires a CPU time of 0.13 to

achieve an error of 1.45 · 10�5 at t = 10 in component p. The third-order scheme has similar stepsize restric-

tions. If coarse accuracy is required, the first-order splitting scheme performs very well. For example, with

h = 10�1, one can obtain a solution with an error of 5 · 10�3 in component p in 10�2 CPU seconds at t = 10

even though the solution is grossly inaccurate in the transient phase. Thus for high stiffness ratios and sit-

uations where only coarse accuracy is required, a first-order dissipative splitting is recommended. If a diss-
ipative split is not possible, fully implicit methods remain the most efficient approach to highly stiff DAE

systems.
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Finally, we remark that the following stepsize sequences were chosen for the first-order and the second-

order splitting scheme, to maintain a constant error of Oð10�5Þ for t 2 [0,10]. In the second-order splitting

case, the maximum stepsize is close to the stability limit.
First-order implicit split : h ¼
10�6; 0 6 t 6 0:12;

10�6 þ 10�2�10�6

0:88
ðt � 0:12Þ; 0:12 6 t 6 1;

10�2; 1 6 t 6 10:

8><
>: ð34Þ

Second-order split : h ¼
1:25 � 10�4; 0 6 t 6 0:08;

1:25 � 10�4 þ 0:007875
0:92

ðt � 0:008Þ; 0:08 6 t 6 1;

8 � 10�3; 1 6 t 6 10:

8><
>: ð35Þ
Using these values for the stepsize, the CPU time for second-order splitting is 2 · 10�2 s which is about

50 times smaller than the CPU time of first-order splitting. Higher order splitting schemes are more efficient

when accuracy decides the stepsizes.
6. Conclusions

We have analyzed and demonstrated first-order convergence of standard ODE splitting schemes applied

to semi-explicit index-1 DAEs, and employed a deferred correction paradigm to obtain efficient higher-

order accurate operator splitting schemes for such DAEs.

Numerical examples exhibit the expected order reduction for the standard two-pass ODE splitting

schemes and the theoretical orders of accuracy of our new deferred correction schemes, and show our

schemes to be efficient in work and storage. While fully implicit RK methods like RADAU5 are useful

for small problems, they become prohibitively expensive for large problems. Our analysis yields efficient
methods for large problems where high-order splitting of constraints from differential equations can be

highly effective.
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